4 research outputs found

    Representational organization of novel task sets during proactive encoding

    Get PDF
    Recent multivariate analyses of brain data have boosted our understanding of the organizational principles that shape neural coding. However, most of this progress has focused on perceptual visual regions (Connolly et al., 2012), whereas far less is known about the organization of more abstract, action-oriented representations. In this study, we focused on humans{\textquoteright} remarkable ability to turn novel instructions into actions. While previous research shows that instruction encoding is tightly linked to proactive activations in fronto-parietal brain regions, little is known about the structure that orchestrates such anticipatory representation. We collected fMRI data while participants (both males and females) followed novel complex verbal rules that varied across control-related variables (integrating within/across stimuli dimensions, response complexity, target category) and reward expectations. Using Representational Similarity Analysis (Kriegeskorte et al., 2008) we explored where in the brain these variables explained the organization of novel task encoding, and whether motivation modulated these representational spaces. Instruction representations in the lateral prefrontal cortex were structured by the three control-related variables, while intraparietal sulcus encoded response complexity and the fusiform gyrus and precuneus organized its activity according to the relevant stimulus category. Reward exerted a general effect, increasing the representational similarity among different instructions, which was robustly correlated with behavioral improvements. Overall, our results highlight the flexibility of proactive task encoding, governed by distinct representational organizations in specific brain regions. They also stress the variability of motivation-control interactions, which appear to be highly dependent on task attributes such as complexity or novelty.SIGNIFICANCE STATEMENTIn comparison with other primates, humans display a remarkable success in novel task contexts thanks to our ability to transform instructions into effective actions. This skill is associated with proactive task-set reconfigurations in fronto-parietal cortices. It remains yet unknown, however, how the brain encodes in anticipation the flexible, rich repertoire of novel tasks that we can achieve. Here we explored cognitive control and motivation-related variables that might orchestrate the representational space for novel instructions. Our results showed that different dimensions become relevant for task prospective encoding depending on the brain region, and that the lateral prefrontal cortex simultaneously organized task representations following different control-related variables. Motivation exerted a general modulation upon this process, diminishing rather than increasing distances among instruction representations

    Transient and sustained control mechanisms supporting novel instructed behavior

    No full text
    The success of humans in novel environments is partially supported by our ability to implement new task procedures via instructions. This complex skill has been associated with the activity of control-related brain areas. Current models link fronto-parietal and cingulo-opercular networks with transient and sustained modes of cognitive control, based on observations during repetitive task settings or rest. The current study extends this dual model to novel instructed tasks. We employed a mixed design and an instruction-following task to extract phasic and tonic brain signals associated with the encoding and implementation of novel verbal rules. We also performed a representation similarity analysis to capture consistency in task-set encoding within trial epochs. Our findings show that both networks are involved while following novel instructions: transiently, during the implementation of the instruction, and in a sustained fashion, across novel trials blocks. Moreover, the multivariate results showed that task representations in the cingulo-opercular network were more stable than in the fronto-parietal one. Our data extend the dual model of cognitive control to novel demanding situations, highlighting the high flexibility of control-related regions in adopting different temporal profiles

    Exploring the link between novel task proceduralization and motor simulation

    Get PDF
    Our ability to generate efficient behavior from novel instructions is critical for our adaptation to changing environments. Despite the absence of previous experience, novel instructed content is quickly encoded into an action-based or procedural format, facilitating automatic task processing. In the current work, we investigated the link between proceduralization and motor simulation, specifically, whether the covert activation of the task-relevant responses is used during the assembly of action-based instructions representations. Across three online experiments, we used a concurrent finger-tapping task to block motor simulation during the encoding of novel stimulus-response (S-R) associations. The overlap between the mappings and the motor task at the response level was manipulated. We predicted a greater impairment at mapping implementation in the overlapping condition, where the mappings' relevant response representations were already loaded by the motor demands, and thus, could not be used in the upcoming task simulation. This hypothesis was robustly supported by the three datasets. Nonetheless, the overlapping effect was not modulated by further manipulations of proceduralization-related variables (preparation demands in Exp.2, mapping novelty in Exp.3). Importantly, a fourth control experiment ruled out that our results were driven by alternative accounts as fatigue or negative priming. Overall, we provided strong evidence towards the involvement of motor simulation during anticipatory task reconfiguration. However, this involvement was rather general, and not restricted to novelty scenarios. Finally, these findings can be also integrated into broader models of anticipatory task control, stressing the role of the motor system during preparation

    Exploring the link between novel task proceduralization and motor simulation

    No full text
    Our ability to generate efficient behavior from novel instructions is critical for our adaptation to changing environments. Despite the absence of previous experience, novel instructed content is quickly encoded into an action-based or procedural format, facilitating automatic task processing. In the current work, we investigated the link between proceduralization and motor simulation, specifically, whether the covert activation of the task-relevant responses is used during the assembly of action-based instructions representations. Across three online experiments, we used a concurrent finger-tapping task to block motor simulation during the encoding of novel stimulus-response (S-R) associations. The overlap between the mappings and the motor task at the response level was manipulated. We predicted a greater impairment at mapping implementation in the overlapping condition, where the mappings' relevant response representations were already loaded by the motor demands, and thus, could not be used in the upcoming task simulation. This hypothesis was robustly supported by the three datasets. Nonetheless, the overlapping effect was not modulated by further manipulations of proceduralization-related variables (preparation demands in Exp.2, mapping novelty in Exp.3). Importantly, a fourth control experiment ruled out that our results were driven by alternative accounts as fatigue or negative priming. Overall, we provided strong evidence towards the involvement of motor simulation during anticipatory task reconfiguration. However, this involvement was rather general, and not restricted to novelty scenarios. Finally, these findings can be also integrated into broader models of anticipatory task control, stressing the role of the motor system during preparation
    corecore